Molecular Modification of N-Cadherin in Response to Synaptic Activity
نویسندگان
چکیده
منابع مشابه
Molecular Modification of N-Cadherin in Response to Synaptic Activity
The relationship between adhesive interactions across the synaptic cleft and synaptic function has remained elusive. At certain CNS synapses, pre- to postsynaptic adhesion is mediated at least in part by neural (N-) cadherin. Here, we demonstrate that upon depolarization of hippocampal neurons in culture by K+ treatment, or application of NMDA or alpha-latrotoxin, synaptic N-cadherin dimerizes ...
متن کاملN-Cadherin, Spine Dynamics, and Synaptic Function
Dendritic spines are one-half (the postsynaptic half) of most excitatory synapses. Ever since the direct observation over a decade ago that spines can continually change size and shape, spine dynamics has been of great research interest, especially as a mechanism for structural synaptic plasticity. In concert with this ongoing spine dynamics, the stability of the synapse is also needed to allow...
متن کاملActivity-Regulated N-Cadherin Endocytosis
Enduring forms of synaptic plasticity are thought to require ongoing regulation of adhesion molecules, such as N-cadherin, at synaptic junctions. Little is known about the activity-regulated trafficking of adhesion molecules. Here we demonstrate that surface N-cadherin undergoes a surprisingly high basal rate of internalization. Upon activation of NMDA receptors (NMDAR), the rate of N-cadherin ...
متن کاملSynaptic localization and activity of ADAM10 regulate excitatory synapses through N-cadherin cleavage.
N-Cadherin has an important role during dendrite arborization, axon guidance, and synaptogenesis. In particular, at synaptic sites, N-cadherin is involved in the regulation of cell-cell adhesion and in morphology and plasticity control. Recent studies have shown that N-cadherin can be cleaved by the metalloproteinase ADAM10. Here we demonstrate that impairing ADAM10 localization and activity at...
متن کاملRelease activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin
At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuron
سال: 2000
ISSN: 0896-6273
DOI: 10.1016/s0896-6273(00)80874-0